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1 Summary

This problem is aimed at testing the accuracy and performance of high-order flow solvers for
problems with deforming domains. Two geometries are considered: a cylinder and an airfoil. The
cylinder cases involve a smaller domain and are intended to serve as verification simulations. The
NACA 0012 problem is larger and has exhibited spread in the results in previous workshops. For
both geometries, multiple motions are defined, and for the cylinder case, simulations at multiple
Reynolds numbers are requested. The sections below describe the setup of each case. The outputs
are defined similarly for both geometries, and a uniform data submission format is outlined in the
Requirements section.

2 Cylinder Cases

These cases involve computing flow inside a cylinder undergoing three different motions, including
translation, rotation, and deformation. In addition, three different Reynolds numbers are considered
for each motion.

2.1 Geometry

The reference geometry for this problem is a perfect cylinder for which several types of motion
are prescribed. The center of motion coincides with the geometric center of the cylinder, and the
fluid domain of interest is the cylinder interior volume. Figure 2 shows a diagram of the problem
geometry and the fluid domain.
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(a) Geometry diagram. (b) Fluid domain.

Figure 2: Cylinder problem description.

2.2 Motion

Three prescribed motions are defined for this problem. They are designed to target the properties
of translation (Motion 1), rotation (Motion 2), and deformation (Motion 3) as shown in Figure 3.

The motion descriptions for translation (∆h(t)), rotation (∆θ(t)), and deformation (r(r0, θ, t))
are given in Table 1. Relevant constants for all motions are listed in Table 2. All cases shall be run
from t = 0 until t = 2 for a total duration of 2 time units. rcyl is the initial radius of the cylinder
wall for all motions. r0 is any radius at the initial time r|t=0, Aθ is a rotation amplitude (Motion
2), and Aa is an amplification factor for the deformation of a circle into an ellipse (Motion 3).

The prescribed-motion function for Motions 1 & 2 is defined as

α(t) = t2 (3− t) /4

2



High-Fidelity CFD Workshop 2021 Mesh Motion: Flow in a cylinder

(a) Motion 1: Translation (b) Motion 2: Rotation (c) Motion 3: Deformation

Figure 3: Cylinder motion descriptions.

Motion 1 Motion 2 Motion 3

∆h(t) α(t) 0 0
∆θ(t) 0 Aθ · α(t) 0

r(r0, θ, t) r0 r0 β(r0, θ, t)

Table 1: Cylinder prescribed-motion test cases, t ∈ [0, 2]

which goes from 0 to 1 on the interval t = [0, 2]. The prescribed-motion for Motion 3 is of a
cylinder deforming into an ellipse such that the interior area remains constant during deformation.
The deformation is defined as a continuous mapping that occurs along radial axes as

β(r0, θ, t) =
b(r0, t)√

1− [e(r0, t) cos θ]2

where the semi-major axis, semi-minor axis, and eccentricity are defined to be

a(r0, t) = ψ(t)r0 ψ(t) = 1 + (Aa − 1)α(t) b(r0, t) =
r0
ψ(t)

e(t) =
√

1− ψ(t)−4

Note, α(t) is the same function defined previously for the translation and rotation motions.
The deformation mapping prescribed in Motion 3 is a continuous mapping along radial axes

as a function of any initial radius (r0) and the corresponding angular location (θ) at a given time
(t), as illustrated in Figure 4. Note, this mapping does not preserve the distribution of nodes in a
discretization, which is demonstrated in Figure 5.

2.3 Governing Equations and Flow Conditions

The governing equations for this problem are the 2D compressible Euler and Navier-Stokes equa-
tions with a constant ratio of specific heats equal to 1.4 and a Prandtl number of 0.72. For the Euler
calculations, the cylinder interior is prescribed to have no normal velocity on the wall. For viscous
calculations, the cylinder interior is prescribed with a no-slip, adiabatic wall boundary condition.

The initial condition at time t = 0 is given by the conserved-variable state vector

u|t0 = [ρ, ρv1, ρv2, ρE]|t0 = [1, 0, 0, 50.]

For each test case, a range of Reynolds numbers should be simulated. The reference velocity is
chosen to be 1.0 and the reference length scale is the cylinder diameter, d = 2rcyl = 1.0.

Reynolds numbers: (Euler Re =∞), (Re = 1000), (Re = 10)
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rcyl 0.5
Aθ π
Aa 1.5

Table 2: Cylinder motion constants.

r0

(a) Initial state.

r(r0, θ, t)

(b) Mapping at time t.

Figure 4: Cylinder problem: diagram of radial deformation mapping.

(a) t = 0 (b) t = 2

Figure 5: Discrete representation of Motion 3 deformation mapping.

3 Airfoil Cases

These cases involve a NACA 0012 airfoil undergoing a smooth flapping-type motion, starting from
rest at zero angle of attack and ending at a one chord length higher position at the end of the
motion at time T . Three motions are considered at one Reynolds number, Re = 1000, based on
the chord length.

3.1 Geometry

The geometry consists of a NACA 0012 airfoil with chord length c = 1, with geometry modified to
give zero trailing edge thickness:

y(x) = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), x ∈ [0, 1].

The far-field boundary should be located at least 100 chord-lengths away from the airfoil.
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3.2 Motion

h(t)

θ(t)

c
c/3

The airfoil undergoes a smooth upward motion of one chord
length for the duration of T = 2 time units, by heaving and
pitching about a point located at the airfoil 1/3 chord location
(see figure). We consider three different motions, with differ-
ent properties and difficulties. We first define the following
polynomials:

b1(t) = t2(t2 − 4t+ 4)

b2(t) = t2(3− t)/4
b3(t) = t3(−8t3 + 51t2 − 111t+ 84)/16

In terms of these, we define the vertical displacement h(t) and the pitching angle θ(t) for the three
motions according to below:

Motion 1 (Pure heaving){
h(t) = b2(t)

θ(t) = 0

Motion 2 (Flow aligning){
h(t) = b2(t)

θ(t) = A2 · b1(t)

Motion 3 (Energy extract-
ing) {

h(t) = b3(t)

θ(t) = A3 · b1(t)

where the constants A2 = 60π/180 and A3 = 80π/180.

3.3 Governing Equations and Flow Conditions

The governing equations for this problem are the 2D compressible Navier-Stokes equations with a
constant ratio of specific heats equal to 1.4 and a Prandtl number of 0.72. Two boundary conditions
are imposed: far-field characteristic conditions at the outer domain and no-slip adiabatic wall
condition on the moving airfoil.

The free-stream has a Mach number M∞ = 0.2 and is horizontal. The Reynolds number based
on the chord of the airfoil is Re = 1000. The initial condition at time t = 0 is the steady-state
solution for the initial position h = 0, θ = 0. To simplify post-processing, we assume convenient
units in which the airfoil chord is c = 1 and the free-stream density and speed are unity, so that
the free-stream conservative state vector is

[ρ, ρu, ρv, ρE] =
[
1, 1, 0, 0.5+1/[M2γ(γ − 1)]

]
.

4 Outputs

The requested output quantities are defined similarly for both the cylinder and the airfoil cases.
The first output is the work (energy) that the fluid exerts on the surface of the cylinder/airfoil
during the motion, which can be written as

W =

∫ T

0
F (t) · v0dt+

∫ T

0
τ (t) · ωdt =

∫ T

0
Fy(t)ḣ(t)dt+

∫ T

0
τz(t)θ̇(t)dt (1)

Here, F (t) = [Fx(t), Fy(t)] is the force imparted by the fluid on the surface, τ(t) = [0, 0, τz(t)] is the
torque imparted by the fluid on the surface about the reference pivot point (cylinder center, airfoil
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1/3 chord), v0 = ḣ(t) is the velocity of the pivot point, and ω0 = [0, 0, θ̇] is the angular velocity of
the cylinder/airfoil about the pivot point. Note, that this output can be equivalently computed as

W =

∫ T

0

∫
surface

~vG(t) · ~fsurf(t)dsdt (2)

where ~vG(t) is the velocity of the surface and ~fsurf(t) is the surface stress vector.
The second output is the vertical impulse from the fluid onto the surface during the motion,

I =

∫ T

0
Fy(t)dt (3)

5 Requirements

1. Perform the indicated simulation for the test cases. Calculate the quantities W and I for
each case, and perform a grid/timestep convergence study to get the values as accurate as
possible. Record the work units.

2. Provide the work units, the converged output values, nDOFs in the discretization (spatial
and temporal), and the distance to the far-field boundary (aifoil case) for each simulation.
Submit this data to the case organizers, using the template shown below.

Geometry Motion Re W I space nDOF time nDOF WU

Cylinder 1 ∞ - - - - -
...

Airfoil 1 1000 - - - - -
...

Table 3: Template for team contributions. The spatial nDOF does not include the equation state
rank. The temporal nDOF is the number of time steps times the number of stages per time step
(in a multistage time integration).
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